Asymmetric Steklov problems with sign-changing weights

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymmetric Elliptic Problems with Indefinite Weights

– We prove the existence of a first nontrivial eigenvalue for an asymmetric elliptic problem with weights involving the laplacian (cf. (1.2) below) or more generally the p-laplacian (cf. (1.3) below). A first application is given to the description of the beginning of the Fučik spectrum with weights for these operators. Another application concerns the study of nonresonance for the problems (1....

متن کامل

Eigenvalue problems with sign-changing coefficients

We consider a class of eigenvalue problems involving coefficients changing sign on the domain of interest. We describe the main spectral properties of these problems according to the features of the coefficients. Then, under some assumptions on the mesh, we explain how one can use classical finite element methods to approximate the spectrum as well as the eigenfunctions while avoiding spurious ...

متن کامل

Bilaplacian problems with a sign-changing coefficient

We investigate the properties of the operator ∆(σ∆·) : H0(Ω) → H−2(Ω), where σ is a given parameter whose sign can change on the bounded domain Ω. Here, H0(Ω) denotes the subspace of H2(Ω) made of the functions v such that v = ν · ∇v = 0 on ∂Ω. The study of this problem arises when one is interested in some configurations of the Interior Transmission Eigenvalue Problem. We prove that ∆(σ∆·) : H...

متن کامل

Superlinear elliptic problems with sign changing coefficients

Via variational methods, we study multiplicity of solutions for the problem    −∆u = λb(x)|u|q−2u + a u + g(x, u) in Ω , u = 0 on ∂Ω . where a simple example for g(x, u) is |u|p−2u; here a, λ are real parameters, 1 < q < 2 < p ≤ 2∗ and b(x) is a function in a suitable space L. We obtain a class of sign changing coefficients b(x) for which two non-negative solutions exist for any λ > 0, and a...

متن کامل

Subcritical Perturbations of Resonant Linear Problems with Sign-changing Potential

We establish existence and multiplicity theorems for a Dirichlet boundary-value problem at resonance. This problem is a nonlinear subcritical perturbation of a linear eigenvalue problem studied by Cuesta, and includes a sign-changing potential. We obtain solutions using the Mountain Pass lemma and the Saddle Point theorem. Our paper extends some recent results of Gonçalves, Miyagaki, and Ma.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2015

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2015.01.002